PyPotteryInk Model Zoo

Overview

This page lists the available pre-trained models for PyPotteryInk. Each model is show specific pros and cons. You can use these models directly or fine-tune them for your specific needs.

Available Models

10k

Description: The base model trained on a diverse dataset of 492 archaeological drawings from multiple contexts including Casinalbo, Montale, Monte Croce Guardia, and Monte Cimino sites.

  • Training Data: 492 paired drawings
  • Resolution: 512×512 pixels
  • Training Steps: 10,000
  • Best For: General purpose archaeological drawing inking, starting point for fine-tuning

Parameters used for training:

Parameter 10k
adam_beta1 0.9
adam_beta2 0.999
adam_epsilon 0.00000001
adam_weight_decay 0.01
allow_tf32 false
checkpointing_steps 500
dataloader_num_workers 0
enable_xformers_memory_efficient_attention true
eval_freq 100
gan_disc_type “vagan_clip”
gan_loss_type “multilevel_sigmoid_s”
gradient_accumulation_steps 1
gradient_checkpointing false
lambda_clipsim 5
lambda_gan 0.5
lambda_l2 1
lambda_lpips 5
learning_rate 0.000005
lora_rank_unet 8
lora_rank_vae 4
lr_num_cycles 1
lr_power 1
lr_scheduler “constant”
lr_warmup_steps 500
max_grad_norm 1
max_train_steps 10,000
mixed_precision “no”
num_samples_eval 100
num_training_epochs 1
pretrained_model_name_or_path “stabilityai/sd-turbo”
resolution 512
set_grads_to_none false
test_image_prep “resized_crop_512”
track_val_fid true
train_batch_size 2
train_image_prep “resized_crop_512”
viz_freq 25

Author: Lorenzo Cardarelli

6h-MCG

Description: Fine-tuned model specialized for Monte Croce Guardia style pottery drawings. Optimized for high-detail preservation and consistent stippling patterns.

  • Training Data: 9 paired drawings from Monte Croce Guardia
  • Base Model: 10k Base Model
  • Resolution: 512×512 pixels
  • Training Steps: 600
  • Best For: Middle Bronze Age / Recent Bronze Age pottery

Parameters used for training:

Parameter 6h-MCG
adam_beta1 0.9
adam_beta2 0.999
adam_epsilon 0.00000001
adam_weight_decay 0.01
allow_tf32 false
checkpointing_steps 100
dataloader_num_workers 4
enable_xformers_memory_efficient_attention true
eval_freq 100
gan_disc_type “vagan_clip”
gan_loss_type “multilevel_sigmoid_s”
gradient_accumulation_steps 4
gradient_checkpointing false
lambda_clipsim 3
lambda_gan 0.9
lambda_l2 1
lambda_lpips 10
learning_rate 0.00001
lora_rank_unet 128
lora_rank_vae 48
lr_num_cycles 1
lr_power 1
lr_scheduler “constant”
lr_warmup_steps 200
max_grad_norm 1
max_train_steps 600
mixed_precision “no”
num_samples_eval 100
num_training_epochs 1
pretrained_model_name_or_path ./10k.pkl
resolution 512
set_grads_to_none false
test_image_prep “resized_crop_512”
track_val_fid true
train_batch_size 1
train_image_prep “resized_crop_512”
viz_freq 50

Author: Lorenzo Cardarelli