PyPotteryInk Model Zoo
Overview
This page lists the available pre-trained models for PyPotteryInk
. Each model is show specific pros and cons. You can use these models directly or fine-tune them for your specific needs.
Available Models
10k
Description: The base model trained on a diverse dataset of 492 archaeological drawings from multiple contexts including Casinalbo, Montale, Monte Croce Guardia, and Monte Cimino sites.
- Training Data: 492 paired drawings
- Resolution: 512×512 pixels
- Training Steps: 10,000
- Best For: General purpose archaeological drawing inking, starting point for fine-tuning
Parameters used for training:
Parameter | 10k |
---|---|
adam_beta1 | 0.9 |
adam_beta2 | 0.999 |
adam_epsilon | 0.00000001 |
adam_weight_decay | 0.01 |
allow_tf32 | false |
checkpointing_steps | 500 |
dataloader_num_workers | 0 |
enable_xformers_memory_efficient_attention | true |
eval_freq | 100 |
gan_disc_type | “vagan_clip” |
gan_loss_type | “multilevel_sigmoid_s” |
gradient_accumulation_steps | 1 |
gradient_checkpointing | false |
lambda_clipsim | 5 |
lambda_gan | 0.5 |
lambda_l2 | 1 |
lambda_lpips | 5 |
learning_rate | 0.000005 |
lora_rank_unet | 8 |
lora_rank_vae | 4 |
lr_num_cycles | 1 |
lr_power | 1 |
lr_scheduler | “constant” |
lr_warmup_steps | 500 |
max_grad_norm | 1 |
max_train_steps | 10,000 |
mixed_precision | “no” |
num_samples_eval | 100 |
num_training_epochs | 1 |
pretrained_model_name_or_path | “stabilityai/sd-turbo” |
resolution | 512 |
set_grads_to_none | false |
test_image_prep | “resized_crop_512” |
track_val_fid | true |
train_batch_size | 2 |
train_image_prep | “resized_crop_512” |
viz_freq | 25 |
Author: Lorenzo Cardarelli
6h-MCG
Description: Fine-tuned model specialized for Monte Croce Guardia style pottery drawings. Optimized for high-detail preservation and consistent stippling patterns.
- Training Data: 9 paired drawings from Monte Croce Guardia
- Base Model: 10k Base Model
- Resolution: 512×512 pixels
- Training Steps: 600
- Best For: Middle Bronze Age / Recent Bronze Age pottery
Parameters used for training:
Parameter | 6h-MCG |
---|---|
adam_beta1 | 0.9 |
adam_beta2 | 0.999 |
adam_epsilon | 0.00000001 |
adam_weight_decay | 0.01 |
allow_tf32 | false |
checkpointing_steps | 100 |
dataloader_num_workers | 4 |
enable_xformers_memory_efficient_attention | true |
eval_freq | 100 |
gan_disc_type | “vagan_clip” |
gan_loss_type | “multilevel_sigmoid_s” |
gradient_accumulation_steps | 4 |
gradient_checkpointing | false |
lambda_clipsim | 3 |
lambda_gan | 0.9 |
lambda_l2 | 1 |
lambda_lpips | 10 |
learning_rate | 0.00001 |
lora_rank_unet | 128 |
lora_rank_vae | 48 |
lr_num_cycles | 1 |
lr_power | 1 |
lr_scheduler | “constant” |
lr_warmup_steps | 200 |
max_grad_norm | 1 |
max_train_steps | 600 |
mixed_precision | “no” |
num_samples_eval | 100 |
num_training_epochs | 1 |
pretrained_model_name_or_path | ./10k.pkl |
resolution | 512 |
set_grads_to_none | false |
test_image_prep | “resized_crop_512” |
track_val_fid | true |
train_batch_size | 1 |
train_image_prep | “resized_crop_512” |
viz_freq | 50 |
Author: Lorenzo Cardarelli